Beijing Normal University Seminar 25 June 2019

Higher education and globalisation 2019

Research collaboration and people mobility in a time of geo-political rivalry

Simon Marginson

Department of Education, University of Oxford ESRC/HEFCE Centre for Global Higher Education Higher School of Economics, Moscow

Higher education and globalisation 2019

Research collaboration and people mobility in a time of geo-political rivalry

Global integration in 2019

- Combined and uneven
- Political economy since 2008, communications, science
- Rise of China and geo-political rivalry

Global research system

- Interpretations of global science
- Growth of R&D funding and scientific outputs
- Spread of scientific capacity across the world
- Growth of networked international collaboration (co-authorship)
- Pluralisation of research power

Global mobility

- International student flows
- Migration politics

Concluding thoughts

GLOBAL INTEGRATION (AND NOT) IN 2019

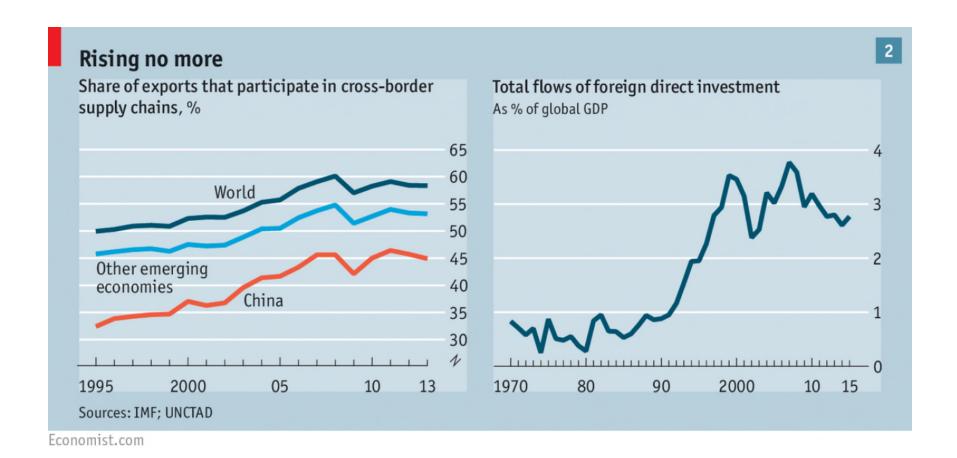
Global integration and transformation

- 'Globalisation' refers to integration on a worldwide or large regional basis, based on patterns of connection and exchange sufficiently regular and sustained to transform societies, or some aspect of them.
 Globalisation is associated with structures, agency and causation at the global level (e.g. global ecology)
- Nations and local institutions have agency and importance, but are not solely self-generating. Forces external to nations can be as important as forces within.
- People think within the "national container" so global systems (e.g. research) are poorly understood.

Sebastian Conrad (2016). What is Global History? Princeton University Press Shahjahan, R. and Kezar, A. (2013). Beyond the 'national container': Addressing methodological nationalism in higher education research. Educational Researcher, 42 (1), pp. 20-29

Combined and uneven global integration

sector	Global system	Multi- lateral	Border flows	Notes
Ecology	YES			The ecology is a natural global system
Trade	NO	YES*	YES	Growing barriers to open trade
Finance	NO	YES	YES	Reversal of earlier growth of financial flows
Communications	YES*			Nations are becoming better at separating off
Governance	NO	YES**	NO	No momentum towards global integration
Science	YES	YES	YES	Global convergence and integration continues
Higher education	NO	NO	YES	Extensive cross-border engagements and effects

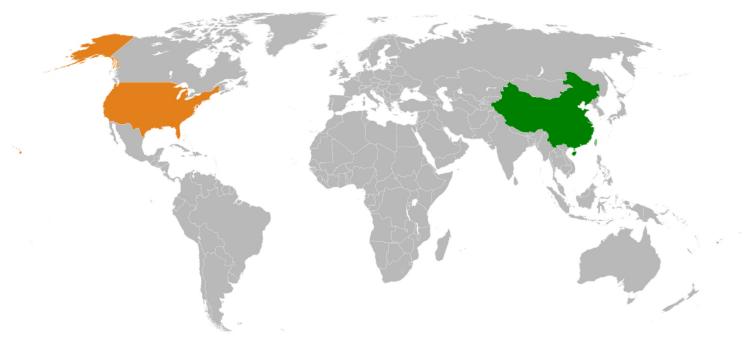

^{*} with exceptions, nations that operate outside the common framework

^{**} weak except in Europe and to a more limited extent, ASEAN

Global rivalry and global cooperation

- Since 2010 the globalisation of the economy has slowed, and the Trade 'Cold War' will slow it further.
- The possibility of a Technology 'Cold War' hangs over continued communicative globalisation. Will we have two global networks with limited interfaces between them?
- Global governance is embryonic and the prospects of advance towards a more integrated world polity have been set back by the growing international tension, especially between the United States and China.
- While international education continues to grow there are some downward pressures on mobility, notably into the US.
- The globalisation of knowledge and science continues but moves to close up are beginning to emerge

Economic globalisation slows and retreats


Source: The Economist, 28 January 2017

Economic globalisation losing momentum

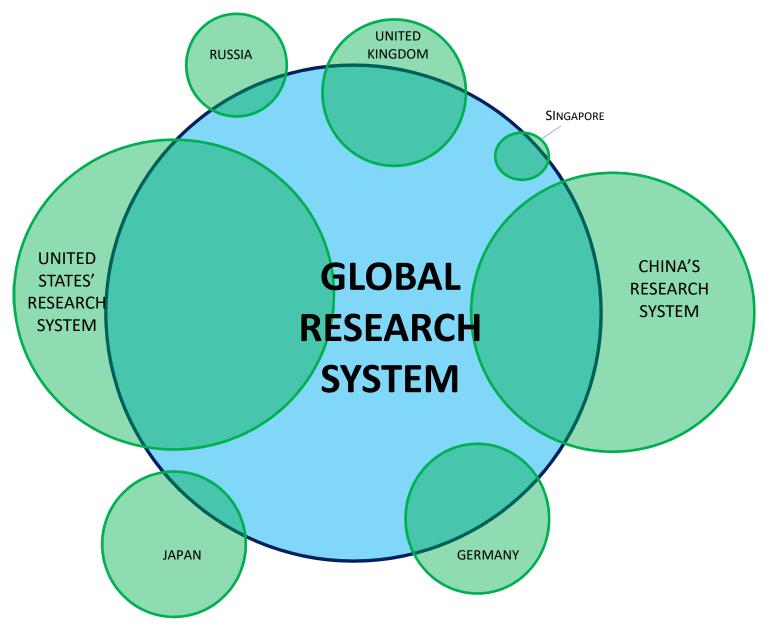
- Foreign Direct Investment as share of global GDP peaked in 2007 and is now back to mid 1990s level.
- Cross-border supply chains are politically vulnerable.
- Shift from labour-intensive to capital-intensive manufacturing (AI etc) reduces offshoring
- Potential of national tax breaks and reductions in tariffs largely exhausted: diminishing returns and political pushback. Little multilateral appetite for further liberalization.
- Smarter local companies nuance local markets better, differentiation of some global products. Financial performance of multinationals no longer outstrips that of nation-bound companies, *except* in the tech sector. Multinational share of total profits down from 35% to 30% in last ten years.

From opening up to the New Cold War

How did it come to this? OR It had to happen some time...

The Cold War has economic, technological, political, ideological, military dimensions

and inevitably affects universities and research



GLOBAL RESEARCH SYSTEM

(that is, how it looked at the time the New Cold War was emerging)

The global research system

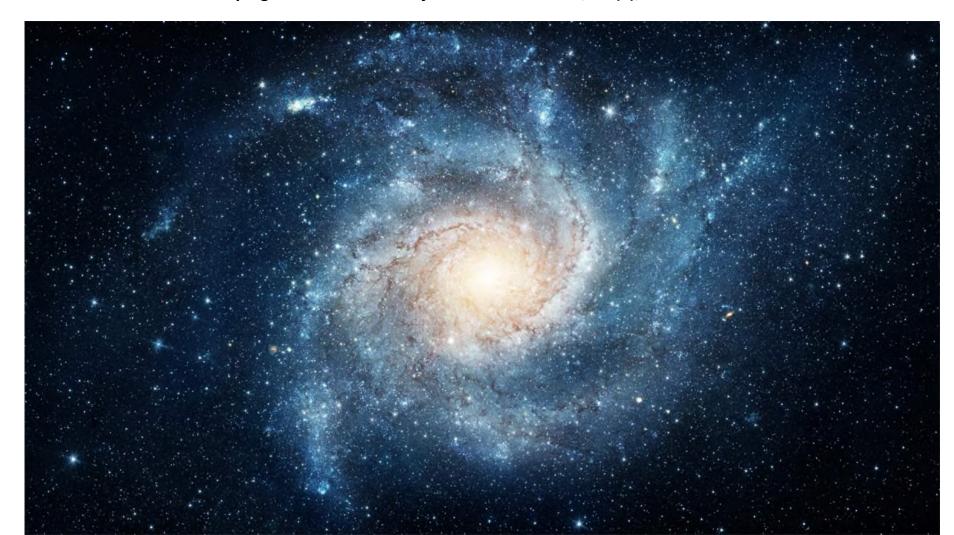
- The global research system consists of structures, institutions, agents and their activities: global publications, worldwide disciplinary forums and networks, and collaborations and citations that support the production and circulation of codified knowledge.
- It developed in the 1990s out of the Internet, synchronous data transfer and global publishing.
- It intersects with autonomous national research systems, to an extent that varies, without fully absorbing them.
- It is now the primary source of innovations, linking with industry in different countries at many points. Firms develop commercial knowledge goods out of research from anywhere, not just from their own countries.

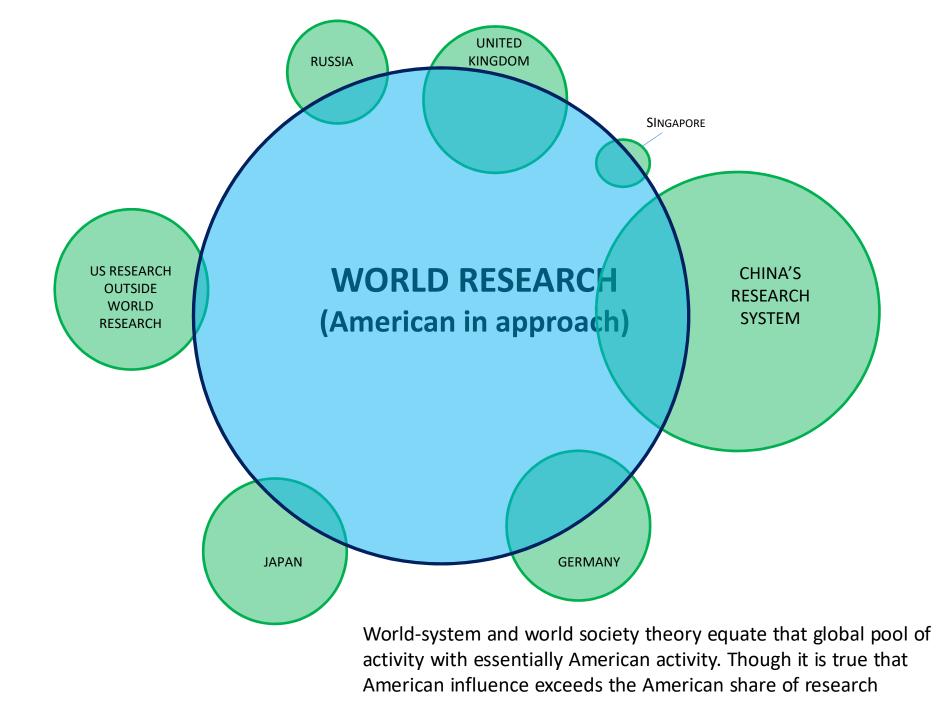
"The choice of scale ... always has normative implications"
- Conrad (2016), What is Global History?, p. 156

National and global science

• The global research system is transformative. In over half of all countries, the pattern of national scientific activity is more determined by the pattern of global activity, than vice versa.

Wagner, C., Park H. and Leydesdorff, L. (2015). The continuing growth of global cooperation networks in research: A conundrum for national governments. *PLoS ONE*, 10 (7): e0131816. doi:10.1371/journal.pone.0131816.


- Investment in science has no necessary correspondence to national industry – the investment 'leaks' into global system. So no government's national investment makes sense
- Disciplinary lop-sidedness is fostered by both national and global science. National governments favour STEM and non-STEM disciplines are more nation bound. Doctoral studies by Xie Meng and Xin Xu point to global/ national dilemmas in social sciences and humanities in China.


Alternative interpretations of the global research system

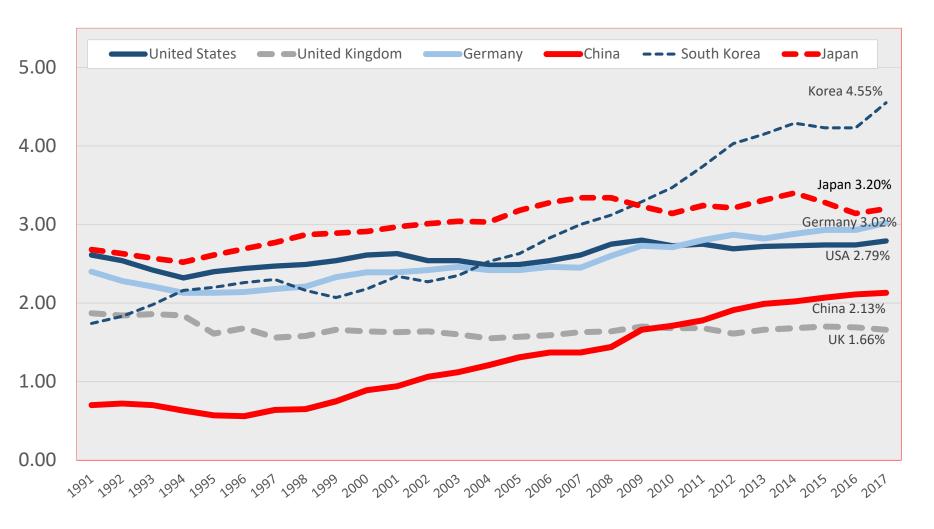
- 1. Global research is a *competition between countries* to secure advantage in the 'arms race in innovation'.
- 2. Global research is a *competition between individual universities* for prestige, resources, students and talent.
- 3. Global research is a *network* of researchers, universities and countries, in which relations are open, cooperative and 'flat'. It expands continually in nodes, links and activities.
- 4. (World systems theory): Global research is a *worldwide* hierarchy of power, like finance or the military. Countries at the global centre dominate and exploit the periphery.
- 5. (Institutional theory): Global research is patterned by universal imitation based on a 'global script' from a 'world society' embodying primarily Western/American practices.

The centre-periphery model of the global research system

Altbach, P. G. (2009). Peripheries and centers: Research universities in developing countries. *Asia Pacific Education Review*, 10 (1), 15–27

TENDENCIES IN GLOBAL SCIENCE SYSTEM

Main tendencies in global research


- Growth of R&D funding
- Growth of scientific outputs
- Spread of scientific capacity across the world
- Growth of networked international collaboration (coauthorship)
- Changing geo-politics: pluralisation of science power

GROWTH OF R&D FUNDING AND RESOURCES FOR RESEARCH

R&D as proportion (%) of GDP, 1991-2017:


USA, UK, Germany, China, Japan, South Korea

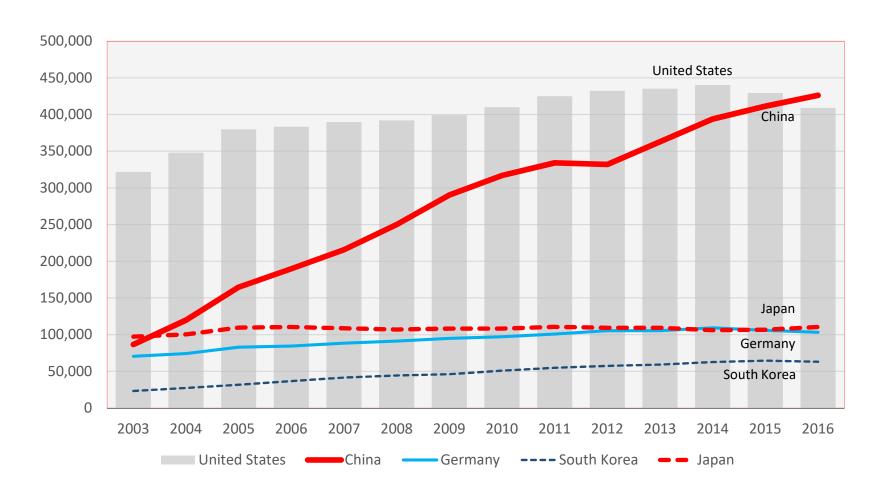
Data: OECD

Spending on R&D in higher education: 1990-2015 and 2017

constant 2010 USD \$billion PPP

Data: OECD

New doctoral degrees in largest doctorate producing countries: 2000 and 2014


	Doctoral graduates 2000	Doctoral graduates 2014	Annual change 2000-2014
United States	44.947	67,591	3.0%
China	11,383	53,653	11.7%
Germany	25,780	28,147	0.6%
United Kingdom	11,566	25,020	5.7%
India	11,296	21,830	4.8%
Japan	15,357	15,045	- 0.2%
France	9903	13,729	2.4%
South Korea	6143	12,931	5.5%

Data: US National Science Board (NSB)

GROWTH OF TOTAL OUTPUT OF SCIENCE PAPERS

Annual number of published papers

United States, China, Germany, United Kingdom, Japan, South Korea: 2003-2016

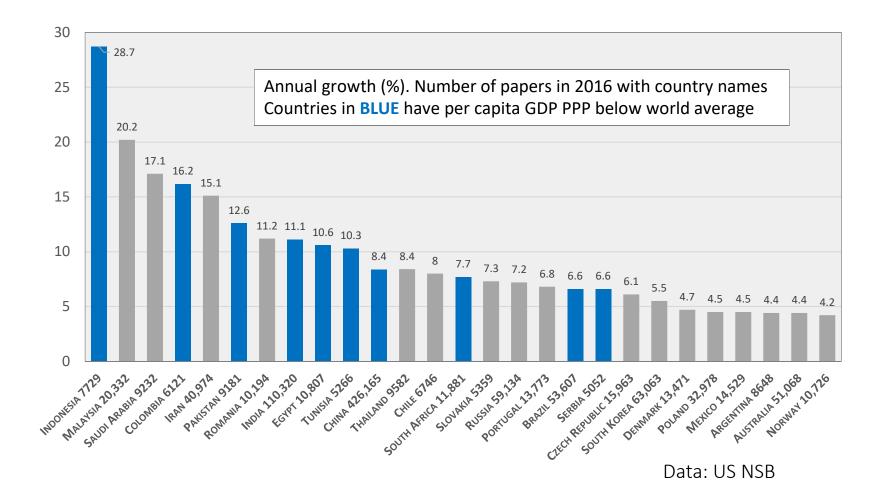
Data: US NSB

Universities producing over 5000 papers and 200 high citation (top 5%) papers: 2006-07 to 2014-17

	2006- 2009	2007- 2010	2008- 2011	2009- 2012	2010- 2013	2011- 2014	2012- 2015	2013- 2016	2014- 2017
5000 papers or more									
WORLD	131	139	144	152	167	185	196	209	215
CHINA	10	15	16	18	21	25	29	39	44
200 high citation p	apers o	r more (papers i	in top 59	% of the	ir resea	rch field)	
WORLD	197	203	212	226	243	258	267	277	291
CHINA	8	9	12	18	23	30	34	41	47

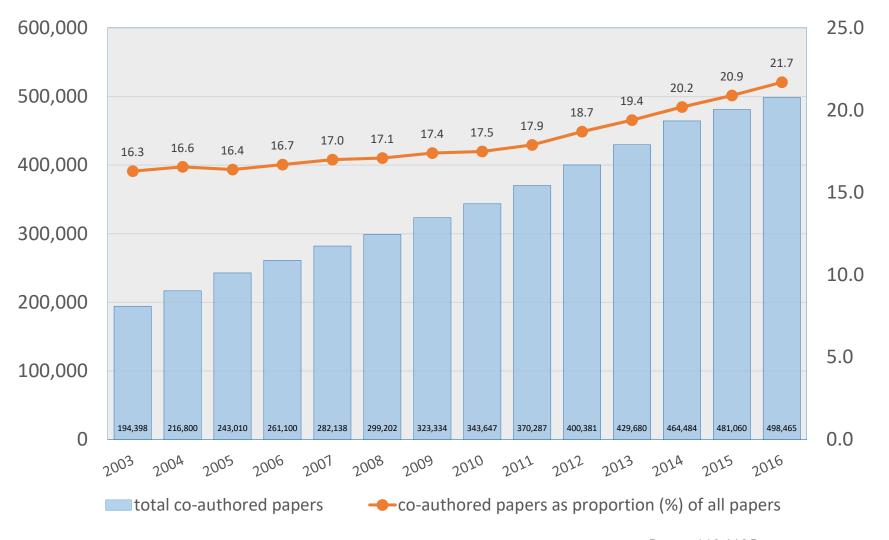
Data: Leiden ranking

Total science papers and papers in top 5% of research field by citation rate: Peking, Tsinghua and Zhejiang Universities: 2006-07 to 2014-17


	2006- 2009	2007- 2010	2008- 2011	2009- 2012	2010- 2013	2011- 2014	2012- 2015	2013- 2016	2014- 2017
Total number of paper	pers in tir	ne period	ł						
Zhejiang U	11,208	12,004	13,151	14,176	15,722	17,808	19,461	20,933	22,100
Tsinghua U	9515	9758	10,437	11,134	12,285	13,760	15,390	17,034	18,404
Peking U	7808	8605	9461	10,437	11,534	12,797	14,121	15,336	16,171
Number of papers i	n top 5%	of their r	esearch f	ield, by ci	tation rate	e			
Zhejiang U	335	361	453	509	624	750	859	958	1092
Tsinghua U	402	450	491	546	633	763	939	1072	1270
Peking U	307	343	402	431	512	622	680	773	831

Data: Leiden ranking

SPREAD OF SCIENTIFIC CAPACITY ACROSS THE WORLD


Average annual rates of growth (%) in science papers: 2006-2016

countries with growth rate above world average of 3.9% and producing more than 5000 papers in 2016

GROWTH OF NETWORKED INTERNATIONAL COLLABORATION

Growth in internationally co-authored science papers, all countries: 2003-2016

Data: US NSB

Proportion of all science papers that were internationally co-authored, selected countries: 2003 and 2016

Country	2003	2016 %
TEN LARGEST RESEAL		
United Kingdom	36.9	57.1
France	39.6	54.8
Germany	39.4	51.0
Italy	33.1	47.3
United States	23.3	37.0
Japan	18.9	27.9
South Korea	25.1	27.0
Russia	26.9	25.1
China	15.3	20.3
India	18.1	17.4

Country	2003 %	2016 %				
STRONG SMALLER RES	EARCH SYST	EMS				
Switzerland	54.5	69.2				
Denmark	47.7	63.3				
Singapore	35.0	62.8				
Netherlands	44.7	61.8				
Finland	41.2	60.4				
SOME RECENTLY EMER	SOME RECENTLY EMERGED SYSTEMS					
Saudi Arabia	34.5	76.8				
Chile	52.7	61.7				
Brazil	27.2	32.5				
Iran	24.2	20.8				

Data: US NSB

Proportion of all science papers that were internationally co-authored, selected universities: 2006-09 and 2014-17

Universities	2006-09 %	2014-17 %
NORTH AMERICA		
U Toronto	43.6	55.4
MIT	38.0	55.1
UC Berkeley	35.4	50.9
Harvard U	36.0	50.4
Stanford U	31.7	44.7
EUROPE		
ETH Zurich	59.0	69.3
U Cambridge	50.6	67.9
U Oxford	54.5	67.4
Heidelberg U	48.7	60.3

Universities	2006-09	2014-17
	%	%
CHINA		
U Hong Kong	36.5	44.5
Peking U	32.6	37.1
Tsinghua U	22.8	34.8
Shanghai Jiao Tong U	20.9	30.3
Zhejiang U	21.8	29.5
EAST ASIA		
Nanyang TU	44.5	65.7
National U Singapore	46.6	65.1
U Tokyo	28.2	38.0
Seoul National U	25.1	29.5

Data: Leiden ranking

Larger national collaborations, 2016

Country pairs with over 6000 jointly-authored papers

Country pair	Joint papers
China-USA	43,968
UK-USA	25,858
Germany-USA	21,584
Canada-USA	19,704
France-USA	14,440
Germany-UK	14,200
Italy-USA	12,784
Australia-USA	12,127
Japan-USA	10,484
China-UK	10,472
France-Germany	10,084

Country pair	Joint papers
France-UK	10,079
Italy-UK	10,023
South Korea-USA	9553
Spain-USA	9530
Australia-China	9246
Netherlands-USA	9078
Australia-UK	8838
Germany-Italy	8821
Switzerland-USA	8455
Germany-Switzerland	8310
France-Italy	8182

Country pair	Joint papers
Netherlands-UK	8039
Germany-Netherl.	7746
Brazil-USA	7606
Canada-China	7245
Germany-Spain	6871
India-USA	6759
China-Japan	6706
Canada-UK	6685
China-Germany	6419
Sweden-USA	6383
France-Spain	6305

Data: US NSB

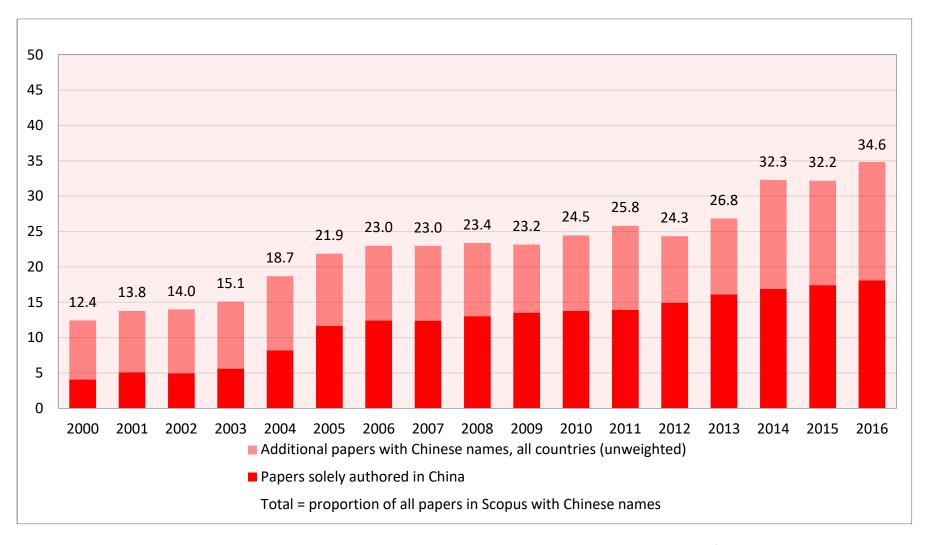
Above average intensity of cross-border collaboration in research, 2016

1.00 indicates that the number of co-authored publications between the pair of countries is at the level that is expected given their overall rates of collaboration with all countries. **1.50** indicates very high intensity of collaboration relative to the expected level, i.e. a significant 'bias' in favour of that pairing within the overall pattern of cross-border networks. **2.00** indicates relatively exceptional intensity

Data - US Science and Engineering Indicators, National Science Foundation

UNITED STATES				
Israel	1.33			
South Korea	1.23			
China	1.19			
Canada	1.13			
Taiwan	1.05			
Mexico	1.04			

CHINA	
Singapore	2.03
Taiwan	1.73
Pakistan	1.23
United States	1.19
Australia	1.15
Japan	1.09


JAPAN	
Thailand	3.28
Taiwan	2.16
South Korea	1.83
Hungary	1.57
Malaysia	1.56
Russia	1.11
Egypt	1.11
China	1.09
Poland	1.02
Czech Republic	1.02

Data: US NSB

CHANGING GEO-POLITICS OF SCIENCE: MORE PLURAL POWER

Growth of China-associated science papers

Proportion (%) of worldwide papers in Scopus: 2000-2016

Data: Xie and Freeman 2018

Growth in high citation (top 5%) papers

selected East Asian universities: 2006-09 to 2012-15

University		Top 5% papers 2006-2009	Top 5% papers 2014-2017	Growth 2006-09 to 2014-17 p.a.
Tsinghua U	CHINA	402	1270	15.46%
Zhejiang U	CHINA	335	1092	15.92%
Shanghai Jiao Tong U	CHINA	314	939	14.67%
Peking U	CHINA	307	831	13.26%
Huazhong UST	CHINA	114	693	25.31%
Harbin IT	CHINA	180	630	16.95%
U Hong Kong	HONG KONG SAR	308	424	4.08%
National U Singapore	SINGAPORE	513	890	7.13%
Nanyang Technological U	SINGAPORE	275	772	13.77%
Tokyo U	JAPAN	656	627	- 0.56%
Kyoto U	JAPAN	485	438	- 1.27%
Seoul National U	STH. KOREA	343	553	6.15%
National Taiwan U	TAIWAN	276	311	1.50%
MIT	USA	1226	1549	2.97%
U Cambridge	UK	1017	1324	3.35%

Data: US NSB

Top universities in STEM research

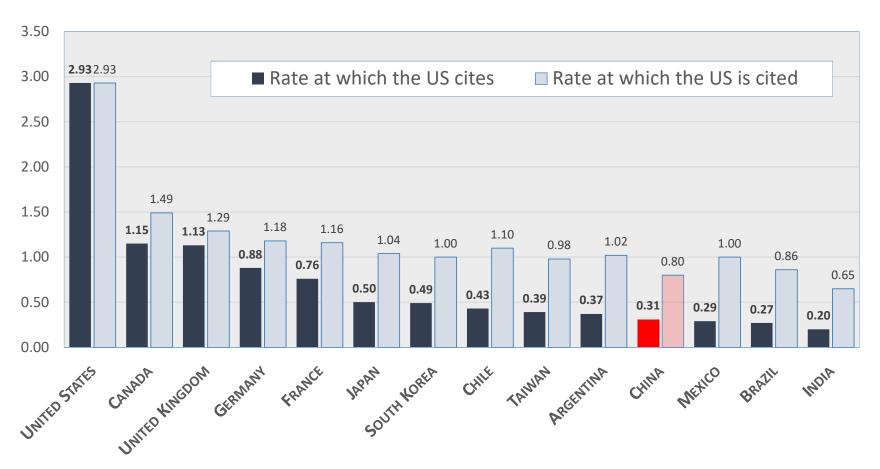
(1) physical sciences and engineering, and (2) mathematics and complex computing, Papers in top 5 per cent of their field by citation rate, World: 2014-2017

University	System	Physical sciences & engineering
Tsinghua U	CHINA	776
MIT	USA	691
Stanford U	USA	598
UC, Berkeley	USA	580
Harvard U	USA	552
Zhejiang U	CHINA	509
Nanyang TU	SINGAPORE	503
U Science & T.	CHINA	452
U Cambridge	UK	449
Shanghai JTU	CHINA	398
ETH Zurich	SWITZERLAND	394
Peking U	CHINA	389
Imperial CL	UK	388
NU Singapore	SINGAPORE	384

University	System	Maths & computing
Tsinghua U	CHINA	236
Harbin IT	CHINA	182
Zhejiang U	CHINA	155
Huazhong U S&T	CHINA	153
U Electronic S&T	CHINA	143
Xidian U	CHINA	142
Beihang U	CHINA	141
MIT	USA	138
Nanyang TU	SINGAPORE	137
NU Singapore	SINGAPORE	137
Shanghai JTU	CHINA	130
City U HK	HK SAR	124
South East U	CHINA	123
Stanford U	USA	119

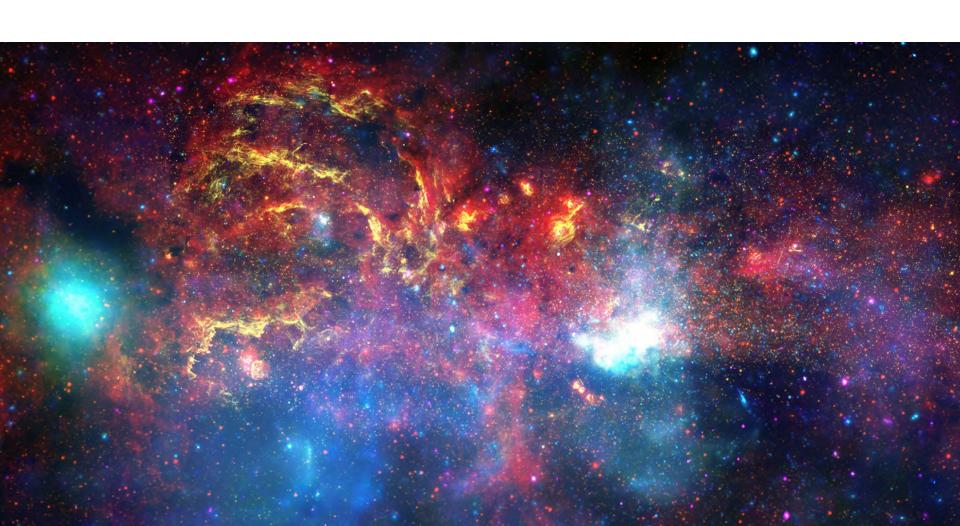
Data: Leiden ranking

Number and proportion of papers in top 10% of their field by citation rate, five discipline clusters, ZJU, THU, PKU, UC Berkeley: 2014-17


	Number of papers in top 10% in 2014-17			
	Zhejiang	Tsinghua	Peking	Berkeley
Physical sciences and engineering	1017	1500	749	1040
Mathematics and computing	298	447	173	164
Biomedical and health sciences	545	188	477	483
Life and earth sciences	346	251	243	389
Social sciences and humanities	44	60	81	295
ALL DISCIPLINES	2250	2446	1713	2371

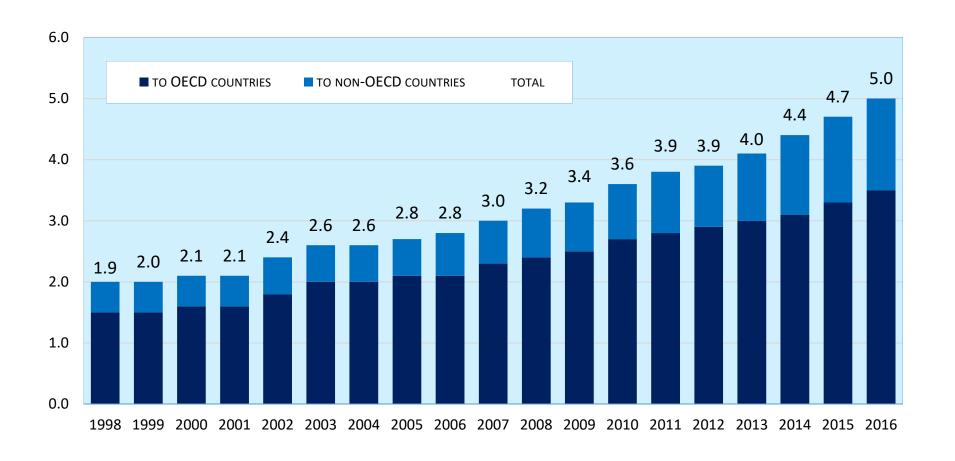
Proportio	Proportion of all papers that were in top 10%				
Zhejiang %	Tsinghua %	Peking %	Berkeley %		
11.7	13.5	12.9	23.3		
11.2	13.1	13.5	18.2		
7.6	11.6	7.3	21.0		
11.2	14.8	12.4	20.0		
8.2	10.8	11.7	18.2		
10.2	13.3	10.6	21.1		

Data: Leiden ranking


Hegemony: Who cites US, who is cited by US

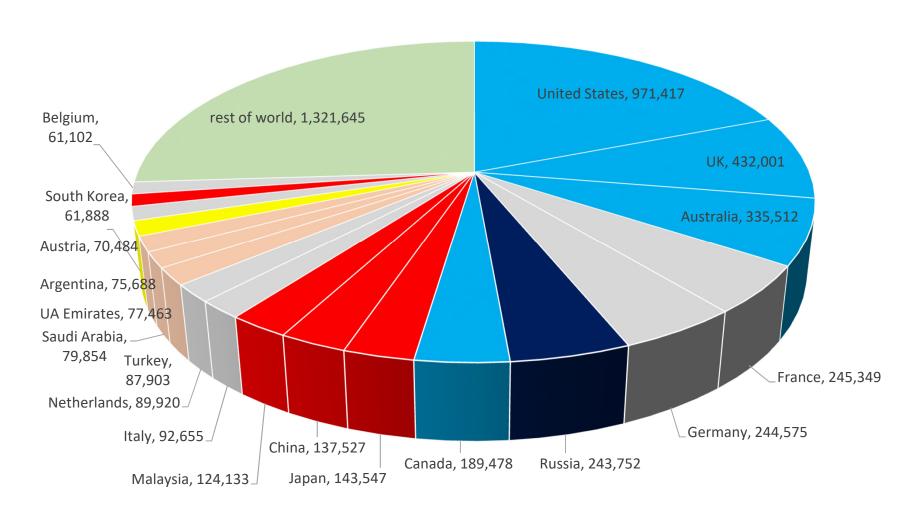
The rate at which papers by authors from selected countries are cited by papers with authors from United States, compared to the rate that these countries cite United States authors, science and engineering papers, 2014. world average = 1.00

Data: US NSB


More complex than centre-periphery model, with at least two very strong nodes (USA stronger), and networked groupings

GLOBAL MOBILITY

Total international/ foreign students in tertiary education, 1998-2016 (millions)


OECD data 2018

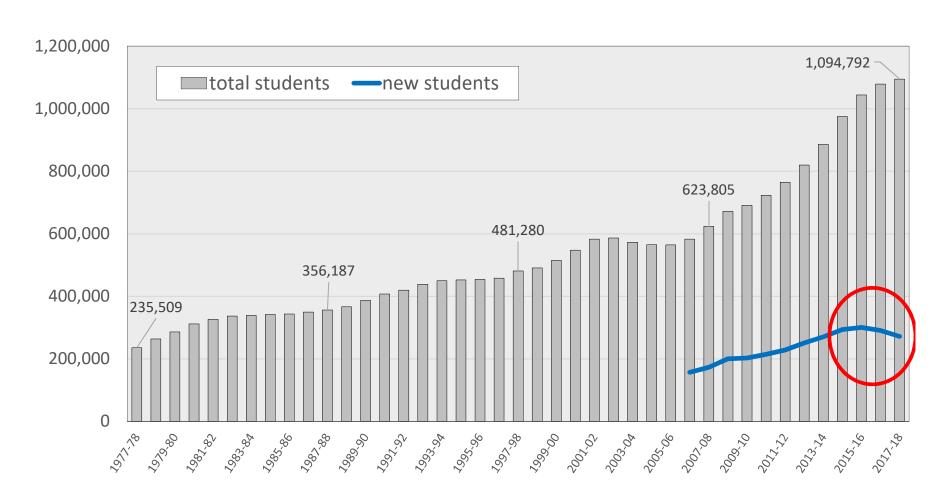
International tertiary students compared to home country students (2016)

Country	outgoing students 2016	total students 2016	mobile students as proportion of total
China	866, 072	43,886,104	1.97%
India	301,406	32,391,800	0.93%
Germany	119,088	3,043,084	3.91%
South Korea	104,972	3,204,348	3.28%
Nigeria	95,731	data n.a.	data n.a.
France	90,543	2,480,186	3.65%
Kazakhstan	90,187	623,534	14.46%
Saudi Arabia	90,178	1,622,441	5.56%
Vietnam	82,159	2,307,361	3.56%
Ukraine	77,263	1,689,724	4.57%
United States	72,690	19,288,424	3.77%
Italy	65,421	1,815,950	3.60%
Malaysia	64,861	1,336,550	4.85%

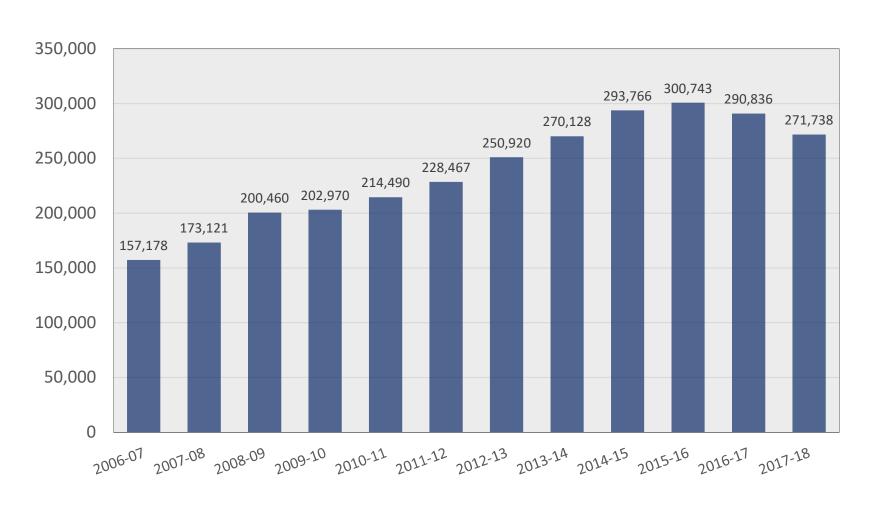
Distribution of incoming students: 2016, OECD data

Larger commercial and non-commercial receiving ('export') countries, 2016

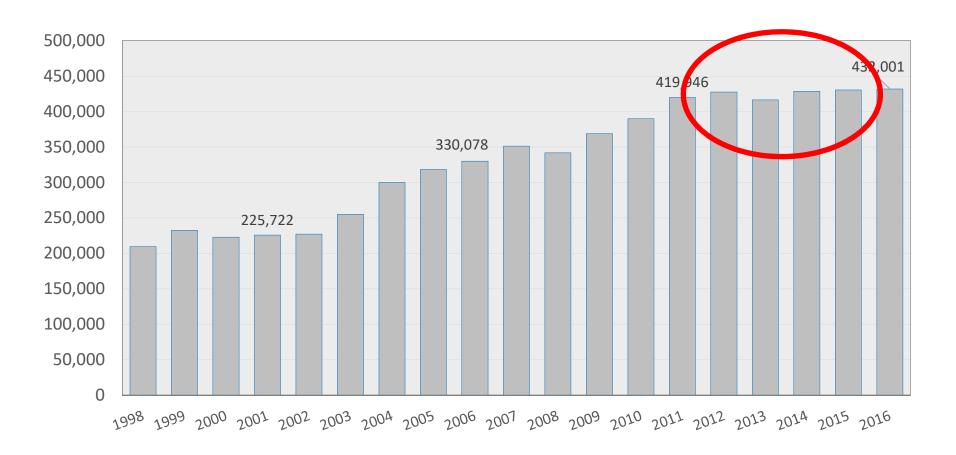
Largely commercial	
Australia	335,512
UK (non-EU students only)	290,738
Malaysia	124,133
New Zealand	53,854
Canada (some subsidies)	(189,478)
Russia (some subsidies)	(243,752)
Netherlands (non-EU only)	(89,920)


Largely non-commercial		
Germany	244,575	
Japan	143,547	
China	137,527	
Italy	92,655	
Argentina	75,688	
Austria	70,484	
South Korea	61,888	

Recently introduced fees	
France (non-EU, subsidies)	(245,348)
Finland (non-EU only)	(23,197)

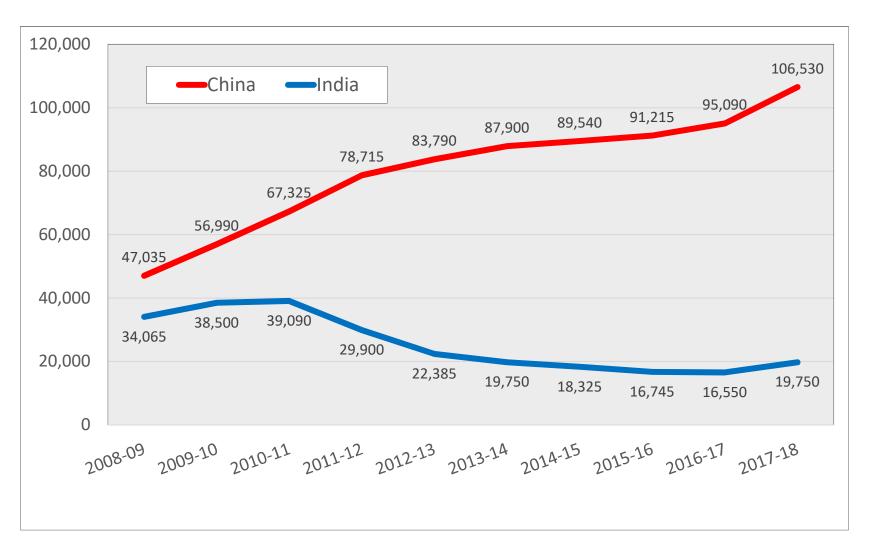

Mixed approaches	
US (many subsidies)	(971,417)

There is a significant number of intermediate cases, countries that charge international students more than domestic students but at below commercial (profit-making) levels


International students, United States: IIE data, 1977-78 to 2017-18

New international students, United States: IIE data, 1977-78 to 2017-18

International students, UK: UNESCO data, 1998-2016


Students entering UK, by country:

2011-12 and 2017-18, HESA data

Country of origin	2011-12	2017-18	% change 2011-12 & 2017-18
China	78,715	106,530	+35.3%
India	29,900	19,750	- 33.9%
United States	16,335	18,885	+ 15.6%
Hong Kong SAR	11,335	16,350	+ 44.2%
Malaysia	14,545	14,970	+ 2.9%
Italy	8010	13,985	+ 74.6%
France	12,835	13,660	+ 4.1%
Germany	15,985	13,545	- 15.3%
Nigeria	17,620	10,540	- 40.2%
Greece	11,790	10,135	- 13.8%
Spain	5935	9630	+ 62.3%
Ireland	15,075	9600	- 36.3%

Students entering UK from China, India:

2008-09 to 2017-18, UK HESA data

International students, Australia: AEI data, 2002-2018

Internationally mobile/ foreign [*] doctoral students as % of all doctoral students, 2015

Numbers in brackets = number of top 500 universities, ARWU 2018

Luxembourg (0)	87.0%
Switzerland (8)	54.3%
New Zealand (4)	46.2%
UK (39)	42.9%
Belgium (7)	42.3%
France (19)	40.1%
USA (139)	37.8%
Netherlands (11)	36.2%
Sweden (11)	34.0%
Australia (23)	33.8%
Denmark (5)	32.1%
Iceland (0)	31.6%

Austria (6)	27.0%
OECD average	25.7%
Ireland (4)	25.4%
Canada (18)	24.4%
Brazil* (6)	22.4%
Portugal (4)	21.2%
Norway (3)	20.5%
Finland (4)	19.9%
Japan (16)	18.2%
Czech Rep.* (1)	14.8%
Estonia (1)	10.7%
Germany (36)	9.1%

9.1%
8.8%
8.7%
8.5%
8.4%
7.2%
6.5%
5.5%
4.5%
2.6%
1.9%

Data: OECD

CONCLUDING THOUGHTS

Question marks over future mobility of students, researchers and knowledge

- Doubtful future of student mobility from China to US with possible increases in flows to other countries. *But* may be pushback against China in parts of Europe
- Open access regime in science is gathering strength but
 - Protocols: Need for agreed legal frameworks on science and IP
 - Networks: Danger of loss of single communications system.
 - Cold War Ideology: Sharing and access become 'spying', larger part of knowledge moves from 'sacred' to 'national interest' and out of global circulation.
 - Trump's restriction of mobility from Middle East and newer f visa refusals for researchers from China (now extended to education) blocks talent flows and potential collaboration.

University departments, faculty and researchers can resist New Cold War mentality and sustain full collaboration, open exchange and mutual solidarity

