

Knowledge: the ultimate globalising factor

Knowledge accumulates collectively like a language and flows like water. It is common and generic, contextualised and diverse, fixed and flexible, autonomous and dependant, part excludable but scarcely commodifiable

Knowledge network or hegemonic hierarchy? Dynamism and power in global science

- The substance of science, the core 'business', is knowledge
- In higher education and scientific institutions the worldwide circuits of knowledge intersect with flows of money, relations of political power, and social allocation and valuation
 - Empirical tendencies in global science
 - Some key questions about global science

A global science system has formed, based on the common pool of papers, and held together by extensive and growing cross-border citation and collaboration (joint papers) –

- the global science system is based on grass roots collaboration and has significant autonomy from national governments and national science systems – but the global system is ultimately supported by local and national funding and infrastructure

- many leading scientists wear two hats, (1) institutional/national and (2) disciplinary/global

Empirical tendencies

The global science system has proven very dynamic

- *Growth:* Rapid increases in many countries in R&D spending and growth of published science papers at 5 per cent a year
- *Diversification:* Science no longer an oligopoly of North America, Europe and Japan. Spread of national science capacity to many more countries
- *Networked cooperation:* Rapid growth of co-authorship in science at both global and national levels
- *Pluralisation:* Widening of group of leading science countries, rise of China (though US science remains strong and globally central)
- *Global integration:* Increase in the weight and role of the global science system vis a vis national science systems

Number of science papers in Scopus, by type of collaboration, world: 1996-2018

Number of science papers in Scopus by large world region: 1996-2018

DIVERSIFICATION

World-wide spread of science systems

Average annual growth (%) in science papers: 2000-2018 Countries with growth rate above world average of 4.95% per year and producing more than 5000 papers in 2018

Deconcentration of country shares of world science papers, 1987-2016

	1987	1997	2007	2017
number of countries with 50% of world science papers	3 USA, UK, Germany	4 USA, Japan, Germany, UK	5 USA, China, Japan, Germany, UK	6 China, USA, India, Germany, Japan, UK
number of countries with 75% of world science papers	9	11	14	16
number of countries with 90% of world science papers	20	23	26	32

GROWTH OF GLOBAL COLLABORATION

Growth in internationally co-authored science papers, all countries: 1996-2016

Proportion of science papers that were internationally co-authored, by discipline group: 2006 and 2016

Internationally co-authored papers 2018

Country pairs of more than 9000 jointly-authored papers

Country pair	Joint papers	Country pair	Joint papers
China-USA	55,382	France-UK	11,015
UK-USA	28,616	Germany-France	10,664
Germany-USA	23,616	Spain-USA	10,236
Canada-USA	21,968	Australia-UK	10,207
France-USA	15,422	Netherlands-USA	9,984
Germany-UK	15,327	South Korea-USA	9,761
China-UK	14,763	Germany-Italy	9,729
Australia-USA	13,939	China-Canada	9,449
Italy-USA	13,804	Switzerland-USA	9,403
China-Australia	13,138	Germany-Switzerland	9,060
Japan-USA	11,533	France-Italy	9,048
Italy-UK	11,198	Netherlands-UK	8,880

Data: US National Science Board

MULTI-POLARITY: DIVERSIFICATION OF POWER

Physical sciences STEM

Biological and Health

Proportion (%) of all papers in world top 1% on the basis of citations, leading countries, 1996-2016 (world average = 1.00)

Growth in spending on R&D in higher education, East Asia: 1996-2018

Top universities in STEM research

(1) physical sciences and engineering, and (2) mathematics and complex computing, Papers in top 5 per cent of their field by citation rate, World: 2015-2018

University	System	Physical sciences & engineering	University	System	Maths & computing
Tsinghua U	CHINA	830	Tsinghua U	CHINA	300
Massachusetts IT	USA	687	Harbin IT	CHINA	252
Zhejiang U	CHINA	569	U Electronic S&T	CHINA	217
Stanford U	USA	563	Xidian U	CHINA	201
Nanyang TU	SINGAPORE	533	Beihang U	CHINA	197
Harvard U	USA	532	Zhejiang U	CHINA	197
U Calif., Berkeley	USA	531	Huazhong U S&T	CHINA	195
U Science & T.	CHINA	500	Nanyang TU	SINGAPORE	181
Harbin IT	CHINA	455	Massachusetts IT	USA	180
Xi'an Jiaotong U	CHINA	455	Shanghai JT U	CHINA	153
Shanghai JT U	CHINA	439	Stanford U	USA	151
U Cambridge	UK	424	Northwestern P. U	CHINA	149
Huazhong U S&T	CHINA	419	Southeastern U	CHINA	148
ETH Zurich	SWITZERLAND	417	NU Singapore	SINGAPORE	140

Growth in high citation (top 5%) papers selected East Asian universities: 2006-09 to 2015-18

University		Top 5% papers 2006-2009	Top 5% papers 2015-2018	Growth 2006-09 to 2015-18 p.a.
Tsinghua U	CHINA	401	1451	15.36%
Zhejiang U	CHINA	335	1263	15.89%
Shanghai Jiao Tong U	CHINA	299	1050	14.98%
Peking U	CHINA	302	910	13.04%
Huazhong U S&T	CHINA	117	874	25.04%
Harbin IT	CHINA	180	790	17.86%
Sun Yat-sen U	CHINA	154	742	19.09%
U Hong Kong	HONG KONG	305	465	4.80%
National U Singapore	SINGAPORE	511	948	7.11%
Nanyang Technological U	SINGAPORE	290	861	12.85%
Tokyo U	JAPAN	668	637	- 0.53%
Seoul National U	STH. KOREA	348	543	5.07%
National Taiwan U	TAIWAN	273	303	1.17%
MIT	USA	1221	1578	2.89%
ETH Zurich	SWITZERLAND	667	933	3.80%

SOME KEY QUESTIONS

- 1. What drives cross-border collaboration?
- 2. Is global science shaping (dominating) national science?
- 3. Which narrative best describes global science?
 - National competition in innovation?
 - Global market of World-Class Universities?
 - Centre-periphery hierarchy of nations?
 - Flat network of scientists and research groups?
- 4. What determines science: states, markets or science?

What drives cross-border collaboration?

- Collaboration is favoured by governments that see it as a source of capacity building and innovation benefits. Systems of incentives (e.g. financial rewards for publishing) encourage it.
- Yet cross-border authorship is practiced in disciplinary communities where it is shaped by logics of shared resources, division of labour within teams, and geographical and cultural proximity.
- Two primary causes are advanced
 - *Preferential attachment:* scientists follow the path of personal advantage, they seek partners from whom they gain status which assists their career
 - Cognitive accumulation: scientists are curiosity driven and follow a knowledge building path, seeking collaborators with whom they can do significant work

Is global science increasingly autonomous, and dominant, vis a vis national science?

"... the international and national networks may be shaping each other in a process of co-evolution between the national institutional structure and the global network. The relative influences of national and international networks appear to vary among nations." (p. 11)

"Collaboration has grown for reasons independent of the needs and policies of the state .. This dynamic system, operating orthogonally to national systems, is increasingly difficult to influence and even less amenable to governance as it grows... nations must learn to manage and benefit from a network. Networks operate by reciprocity, exchange, incentives, trust, and openness..." (p. 2, p. 12)

Wagner, C., Park H. and Leydesdorff, L. (2015). The continuing growth of global cooperation networks in research: A conundrum for national governments. *PLoS ONE* 10 (7): e0131816. doi:10.1371/journal.pone.0131816

The global research system? Which narrative

- Arms race of competing nations?
- Market of competing universities (WCUs)?
- A global hierarchy (and if so, a centre-periphery hierarchy?)
- An open and increasingly flat network that expands continually?

AN ARMS RACE IN INNOVATION?

The technological nationalist explanation

R&D as proportion (%) of GDP, 1991-2017: USA, UK, Germany, China, Japan, South Korea

Data: OECD

A GLOBAL MARKET OF COMPETING WCUs?

Papers in top 5% by citations 2015-18: Leiden

university	country	Top 5% papers	all papers	% of all papers in top 5%
Harvard U	USA	4282	33,722	12.7
Stanford U	USA	2078	16,161	12.9
U Toronto	CANADA	1691	22,995	7.4
U Oxford	UK	1610	15,353	10.5
MIT	USA	1578	10,563	14.9
U Michigan	USA	1473	18,598	7.9
Tsinghua U	CHINA	1451	19,902	7.3
U College London	UK	1424	14,742	9.7
Johns Hopkins U	USA	1407	17,215	8.2
U Cambridge	UK	1370	13,485	10.2
U Washington Seattle	USA	1329	14,730	9.0
U California - Berkeley	USA	1313	10,671	12.3
U Pennsylvania	USA	1266	13,414	9.4
Zhejiang U	CHINA	1263	23,510	5.4

A CENTRE-PERIPHERY HIERARCHY

In which traditional leaders stay on top

Centre-periphery model of worldwide higher education?

The old dependency model is obsolete

- New science nations and groups emerge freely in the global science system without 'gatekeeping' by leading nations; many middle income and some lower income nations have viable science systems; emerging researchers network freely with emerging researchers in other countries
- The rise of East Asia and the growth of science in India, Iran, Brazil and elsewhere has blown Euro-American centrism out of the water
- There is more than one path to the development of science. Some emerging nations emphasise robust national capacity building and networks (e.g. Iran, South Korea); some build capacity primarily through global collaborations (e.g. Paraguay); some combine the two (e.g. China)

More complex than centre-periphery suggests More than one 'centre', networked groupings

A FLAT GLOBAL NETWORK?

Networks are explanatory up to a point

- The dynamics of networks match those of knowledge itself; networks models provide the best explanation for the rapid growth of global science
- Global science has evolved towards more not less inclusion over time.
 Global science is open to new players and fosters agency and up till now, in much of the world, it seems to have become more independent of nations
- BUT science power is very unequal. Knowledge circuits are not organised on the basis of equality of respect. Anglo-American countries are very dominant. It is possible for any country with resources to become as strong science country but much harder to change (or even re-imagine) the dominant cultural patterns, centred on the leading universities, their personnel and their conventions, standards and language

Hegemony: Who cites US, who is cited by US

The rate at which papers by authors from selected countries are cited by papers with authors from United States, compared to the rate that these countries cite United States authors, science and engineering papers, 2014. world average = 1.00

First language speakers and total language speakers, Ethnologue 2018

	L1 speakers (million)
Chinese (Mandarin)	909
Spanish	442
English	378
Hindi	260
Bengali	243
Portuguese	223
Russian	154
Western Punjabi	93
Javanese	84
Chinese (Wu)	81
Turkish	79
French	77

	L1 & L2 (million)
English	1121
Chinese (Mandarin)	1107
Hindi	534
Spanish	513
French	285
Standard Arabic	274
Russian	265
Bengali	262
Portuguese	237
Indonesian	198
Urdu	163
German	132

Countries where over 50% of people are English first language speakers

Shanghai ARWU top 10 countries, 2020

	top 100 universities	top 500 universities
United States	45	137
United Kingdom	8	36
Australia	7	23
China (mainland only)	6	71
France	5	17
Switzerland	5	8
Germany	4	30
Canada	4	19
Netherlands	4	12
Japan	3	14

Chinese language use

The Spanish speaking world

The French speaking world

Arabic speaking countries

Is the science system ultimately autonomous or is it determined by nations and markets?

" Scientists have had a particular need for functional differentiation, since they need room for provisional interpretations or hypotheses that they may wish to change with hindsight. In the longer run, the sciences can allow for normative control only over the conditions of the communication (e.g., resource allocations), but not over the substantive and reflexive contents of these communications. Thus, the differentiation from normative integration has been a functional requirement for the further development of natural philosophy, that is, the new sciences. This crucial conflict was fought in Western Europe between the appearance of Galileo's Dialogo in 1632 and the publication of Newton's Principia in 1687."

- Loet Lydesdorff, Scientific communication and cognitive codification: Social systems theory and the sociology of scientific knowledge, *European Journal of Social Theory*, 10 (3), pp. 375-388
- The science system rests on the autonomy of individuals and disciplinary groups, and the autonomy of the system (e.g. freedom to communicate and work together)
- US-China tensions and the accompanying national 'securitisation' of international academic cooperation might change that
- Nazi Germany showed that (1) a determined state can break a strong science system, and (2) there are decisive limits to what science can achieve in the absence of the autonomy of individual scientists and the autonomy of the science system